Let S be the sum when 5 fair dice are rolled Find the pgf pr
Let S be the sum when 5 fair dice are rolled. Find the pgf (probablity Generating Functions) of S???
and describe how you can use it to find the probability P(S = 20).???
please help me
Solution
IF 5 dice are thrown totals can be 5,6,7.....30
No of outcomes = 6^5 =7776
Thus the prob function is listed above
P(s=20) = 0.083719
----------------------------------------------------------------
Working note:
For 5 (1,1,1,1,1)
6 (2,1,1,1,1) 2 can be any of the 5 places
7 (2,2,1,1,1) Or (3,1,1,1,1) (shuffled)
and so on
| Prob | ||
| 5 | 1 | 0.000129 |
| 6 | 5 | 0.000643 |
| 7 | 15 | 0.001929 |
| 8 | 35 | 0.004501 |
| 9 | 70 | 0.009002 |
| 10 | 126 | 0.016204 |
| 11 | 205 | 0.026363 |
| 12 | 305 | 0.039223 |
| 13 | 420 | 0.054012 |
| 14 | 540 | 0.069444 |
| 15 | 651 | 0.083719 |
| 16 | 735 | 0.094522 |
| 17 | 780 | 0.100309 |
| 18 | 780 | 0.100309 |
| 19 | 735 | 0.094522 |
| 20 | 651 | 0.083719 |
| 21 | 540 | 0.069444 |
| 22 | 420 | 0.054012 |
| 23 | 305 | 0.039223 |
| 24 | 205 | 0.026363 |
| 25 | 126 | 0.016204 |
| 26 | 70 | 0.009002 |
| 27 | 35 | 0.004501 |
| 28 | 15 | 0.001929 |
| 29 | 5 | 0.000643 |
| 30 | 1 | 0.000129 |
| 7776 | 1 |
