Let S be the sum when 5 fair dice are rolled Find the pgf pr

Let S be the sum when 5 fair dice are rolled. Find the pgf (probablity Generating Functions) of S???

and describe how you can use it to find the probability P(S = 20).???

please help me

Solution

IF 5 dice are thrown totals can be 5,6,7.....30

No of outcomes = 6^5 =7776

Thus the prob function is listed above

P(s=20) = 0.083719

----------------------------------------------------------------

Working note:

For 5 (1,1,1,1,1)

     6 (2,1,1,1,1) 2 can be any of the 5 places

     7 (2,2,1,1,1) Or (3,1,1,1,1) (shuffled)

and so on

Prob
5 1 0.000129
6 5 0.000643
7 15 0.001929
8 35 0.004501
9 70 0.009002
10 126 0.016204
11 205 0.026363
12 305 0.039223
13 420 0.054012
14 540 0.069444
15 651 0.083719
16 735 0.094522
17 780 0.100309
18 780 0.100309
19 735 0.094522
20 651 0.083719
21 540 0.069444
22 420 0.054012
23 305 0.039223
24 205 0.026363
25 126 0.016204
26 70 0.009002
27 35 0.004501
28 15 0.001929
29 5 0.000643
30 1 0.000129
7776 1
Let S be the sum when 5 fair dice are rolled. Find the pgf (probablity Generating Functions) of S??? and describe how you can use it to find the probability P(S

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site