The Ball Corporations beverage can manufacturing plant in Fo
The Ball Corporation\'s beverage can manufacturing plant in Fort Atkinson, Wisconsin, uses a metal supplier that provides metal with a known thickness standard deviation = 0.000821 mm. Assume a random sample of 45 sheets of metal resulted in an 1formula131.mml = 0.1503 mm. Calculate the 90 percent confidence interval for the true mean metal thickness. (Round your answers to 4 decimal places.) The 90% confidence interval is from, to?
Solution
Note that              
 Margin of Error E = z(alpha/2) * s / sqrt(n)              
 Lower Bound = X - z(alpha/2) * s / sqrt(n)              
 Upper Bound = X + z(alpha/2) * s / sqrt(n)              
               
 where              
 alpha/2 = (1 - confidence level)/2 =    0.05          
 X = sample mean =    0.1503          
 z(alpha/2) = critical z for the confidence interval =    1.64          
 s = sample standard deviation =    0.000821          
 n = sample size =    45          
               
 Thus,              
 Margin of Error E =    0.000200715          
 Lower bound =    0.150099285          
 Upper bound =    0.150500715          
               
 Thus, the confidence interval is              
               
 (   0.150099285   ,   0.150500715   ) [ANSWER]

