Let X Y and Z be three independent N11 random variables Find

Let X, Y, and Z be three independent N(1,1) random variables. Find E[XY|Y+Z=1].

Solution

E[XY|Y+Z=1]=E[X]E[Y|Y+Z=1] = E[Y|Y+Z=1]

NOTE: E[Y|Y+Z=1]=E[Z|Y+Z=1] (By symmetry)

E[Y|Y+Z=1]+E[Z|Y+Z=1]=E[Y+Z|Y+Z=1]=1

THEREFORE:

E[Y|Y+Z=1]=1/2

E[XY|Y+Z=1]=1/2

Let X, Y, and Z be three independent N(1,1) random variables. Find E[XY|Y+Z=1].SolutionE[XY|Y+Z=1]=E[X]E[Y|Y+Z=1] = E[Y|Y+Z=1] NOTE: E[Y|Y+Z=1]=E[Z|Y+Z=1] (By s

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site