Solve each oblique triangle having sides a b c and angles al
Solve each oblique triangle having sides a, b, c and angles alpha, beta, gamma (side a is opposite angle alpha, side b is opposite angle beta, and side c is opposite angle gamma). a = 12 cm, b = 15 cm, c = 20 cm a = 105 degree, a = 8 in, c = 10 In a = 18 ft, b = 22 ft, y = 35 degree
Solution
1)
i)cos=[a2+b2-c2]/2ab
cos=[122+152-202]/2*12*15
=94.94o
cos=[c2+b2-a2]/2cb
cos=[202+152-122]/2*20*15
=36.71o
+ + =180o
36.71o+ +94.94o =180o
=48.35o
=====================================
ii)
by law of sines a/sin=b/sin=c/sin
8/sin105o=b/sin=10/sin
8/sin105o=10/sin
sin=(10/8)sin105o
=does not exist
no triangle possible
======================================
iii)c2=a2+b2-2abcos
c2=182+222-2*18*22cos35o
c=12.62 ft
by law of sines a/sin=b/sin=c/sin
by law of sines 18/sin=22/sin=12.62/sin35o
18/sin=12.62/sin35o , 22/sin=12.62/sin35o
sin=(18/12.62)sin35o,sin=(22/12.62)sin35o
=55o,=90o
