Find the general solution of d2ydt2 4 dydt 29 y cos 2tSol
Solution
First we solve the assocaited homogeneous ode which is
y\'\'+4y\'+29y=0
This is a linear homogeneous ode with constant coefficients
So solution is of the form: y=exp(kt)
Substituting y=exp(kt) in associated homogeneous ode gives
k^2+4k+29=0
Solving gives
k=2+5i,2-5i
Hence general soluton to homogeneous ode is
y=exp(2t)( A sin(5t)+B cos(5t)
Now we need find aprticular solution
We make the guess based on inhomogeneous part ie cos(2t)
Guess is: yp=C cos(2t)+D sin(2t)
yp\'=-2C sin(2t)+2D cos(2t)
yp\'\'=-4yp
Substituting gives
-4yp+4*(-2C sin(2t)+2D cos(2t))+29yp=cos(2t)
25yp+4*(-2C sin(2t)+2D cos(2t))=cos(2t)
25(C cos(2t)+D sin(2t))+4*(-2C sin(2t)+2D cos(2t))=cos(2t)
(25C+8D)cos(2t)+(25D-8C)sin(2t)=cos(2t)
We get
25C+8D=1
25D=8C
C=25D/8
25*25D/8+8D=1
(25^2+8^2)D=8
D=8/289
C=25/289
yp=(25cos(2t)+8 sin(2t))/289
Hence general solution is
y=y=exp(2t)( A sin(5t)+B cos(5t)+(25cos(2t)+8 sin(2t))/289

