Discrete Math Sally has two coins The first coin is a fair c
Discrete Math
Sally has two coins. The first coin is a fair coin and the second coin is biased. The biased coin comes up heads with probability .75 and tails with probability .25. She selects a coin at random and flips the coin ten times. Out of the ten coin flips, 7 flips come up heads and 3 come up tails. What is the probability that she selected the biased coin?
Solution
Let
R = getting y heads and 3 tails in 10 tosses
 B = biased
 F =fair
Thus,
P(R) = P(F) P(R|F) + P(B) (R|B)
************
For P(R|F):
Note that the probability of x successes out of n trials is          
           
 P(n, x) = nCx p^x (1 - p)^(n - x)          
           
 where          
           
 n = number of trials =    10      
 p = the probability of a success =    0.5      
 x = the number of successes =    7      
           
 Thus, the probability is          
           
 P (    7   ) =    0.1171875
Hence, P(R|F) = 0.1171875.
**************
For P(R|B):
Note that the probability of x successes out of n trials is          
           
 P(n, x) = nCx p^x (1 - p)^(n - x)          
           
 where          
           
 n = number of trials =    10      
 p = the probability of a success =    0.75      
 x = the number of successes =    7      
           
 Thus, the probability is          
           
 P (    7   ) =    0.250282288
hence, P(R|B) = 0.250282288.
****************
Thus,
 P(R) = P(F) P(R|F) + P(B) (R|B)
P(R) = 0.5*0.1171875 + 0.5*0.250282288 = 0.183734894
Therefore, as
P(B|R) = P(B) P(R|B) / P(R) = 0.5*0.250282288/0.183734894
P(B|R) = 0.681096232 [ANSWER]

