1 Find the polar equation that has the same graph as the giv
1. Find the polar equation that has the same graph as the given rectangular equation: x^3 + y^3 -xy = 0
2. Prove this identity: 1 + cot^3 t/ 1 + cot t = csc^2 t - cot t
3. Prove this identity: sin x + 1 / cosx + cotx = tan x
Solution
1)x^3 + y^3 -xy = 0
in polar coordinates
x=rcos, y=rsin,x2+y2=r2
(rcos)3+(rsin)3-(rcos rsin)=0
r2(r(cos)3+r(sin)3-cossin)=0
(r(cos)3+r(sin)3-cossin)=0
2)(1 + cot3t)/ (1 + cott)
(13 + cot3t)/ (1 + cott)
a3+b3=(a+b)(a2-ab+b2)
=(1 + cott)(1-cott+cot2t)/ (1 + cott)
cancel out (1 + cott)
=(1-cott+cot2t)
=(1+cot2t-cott)
=csc2t -cott
3)(sin x + 1)/ (cosx + cotx )
(sin x + 1)/ (cosx + (cosx/sinx) )
(sin x + 1)/ (sinxcosx + cosx )/sinx
(sin x + 1)sinx/ (sinxcosx + cosx )
(sin x + 1)sinx/ (cosx (sinx+1))
cancel out sinx +1
=sinx/cosx
=tanx

