Evaluate det A and detAt Compare detA and detAT for a A 4 2
     Evaluate det (A) and det(A^t). Compare det(A) and det(A^T) for: (a) A = [4 -2 -3 3]; (b)A = [-3 -1 2 5 -3 6 1 0 4]![Evaluate det (A) and det(A^t). Compare det(A) and det(A^T) for: (a) A = [4 -2 -3 3]; (b)A = [-3 -1 2 5 -3 6 1 0 4]Solutiona) A = [ 4 -2 -3 3 ] det A = (4x3) -   Evaluate det (A) and det(A^t). Compare det(A) and det(A^T) for: (a) A = [4 -2 -3 3]; (b)A = [-3 -1 2 5 -3 6 1 0 4]Solutiona) A = [ 4 -2 -3 3 ] det A = (4x3) -](/WebImages/3/evaluate-det-a-and-detat-compare-deta-and-detat-for-a-a-4-2-972207-1761499715-0.webp) 
  
  Solution
a) A = [ 4 -2
-3 3 ]
det A = (4x3) - (-2 x-3) = 12-6 = 6
AT = [ 4 -3
-2 3 ]
det (AT) = (4x3) - (-3x-2) = 12-6 = 6
Therefore,
det A = det (AT)
b)
det (A) = -3(-3 x4- 6x0 ) -(-1) (5x4 -6x1) + 2 [5x0 - (-3x1)]
= 36 +14 +6
= 56
AT = [ -3 5 1
-1 -3 0
2 6 4]
det(AT) = -3 (-3x 4 - 6x0) - 5 (-1x4 - 2x0) +1 [-1x6-(-3x2)]
= 36 + 20
= 56
Therefore,
det A = det (AT)
![Evaluate det (A) and det(A^t). Compare det(A) and det(A^T) for: (a) A = [4 -2 -3 3]; (b)A = [-3 -1 2 5 -3 6 1 0 4]Solutiona) A = [ 4 -2 -3 3 ] det A = (4x3) -   Evaluate det (A) and det(A^t). Compare det(A) and det(A^T) for: (a) A = [4 -2 -3 3]; (b)A = [-3 -1 2 5 -3 6 1 0 4]Solutiona) A = [ 4 -2 -3 3 ] det A = (4x3) -](/WebImages/3/evaluate-det-a-and-detat-compare-deta-and-detat-for-a-a-4-2-972207-1761499715-0.webp)
