I need the drawing of the call stack and the heap Consider t
I need the drawing of the call stack and the heap
Consider the following C functions: void main(...) {int result = fib(3); printf(\"Result = %, d\ \", result);} int fib(int n) {if (nSolution
#include<stdio.h>
 int main()
 {
 int result = fibo(7);
 printf(\"\  \ Result = %d \ \", result);
 }
 int fibo(int n)
 {
 static int c, d, r;
 if(n < 2)
 {
 printf(\"\  n = %d\\t\", n);
 return n;
 }
 printf(\"\ fibo(n - 1) = %d\\t\", c);
 printf(\"\ fibo(n - 2) = %d\\t\", d);
 printf(\"\ fibo(n - 1) + fibo(n - 2) = %d\\t\", r);
 return r = (fibo(n - 1) + fibo(n - 2));
 return r;
 }
Output:
fibo(n - 1) = 0
 fibo(n - 2) = 0
 fibo(n - 1) + fibo(n - 2) = 0
 fibo(n - 1) = 0
 fibo(n - 2) = 0
 fibo(n - 1) + fibo(n - 2) = 0
 fibo(n - 1) = 0
 fibo(n - 2) = 0
 fibo(n - 1) + fibo(n - 2) = 0
 fibo(n - 1) = 0
 fibo(n - 2) = 0
 fibo(n - 1) + fibo(n - 2) = 0
 fibo(n - 1) = 0
 fibo(n - 2) = 0
 fibo(n - 1) + fibo(n - 2) = 0
 fibo(n - 1) = 0
 fibo(n - 2) = 0
 fibo(n - 1) + fibo(n - 2) = 0
 n = 1
 n = 0
 n = 1
 fibo(n - 1) = 0
 fibo(n - 2) = 0
 fibo(n - 1) + fibo(n - 2) = 2
 n = 1
 n = 0
 fibo(n - 1) = 0
 fibo(n - 2) = 0
 fibo(n - 1) + fibo(n - 2) = 3
 fibo(n - 1) = 0
 fibo(n - 2) = 0
 fibo(n - 1) + fibo(n - 2) = 3
 n = 1
 n = 0
 n = 1
 fibo(n - 1) = 0
 fibo(n - 2) = 0
 fibo(n - 1) + fibo(n - 2) = 5
 fibo(n - 1) = 0
 fibo(n - 2) = 0
 fibo(n - 1) + fibo(n - 2) = 5
 fibo(n - 1) = 0
 fibo(n - 2) = 0
 fibo(n - 1) + fibo(n - 2) = 5
 n = 1
 n = 0
 n = 1
 fibo(n - 1) = 0
 fibo(n - 2) = 0
 fibo(n - 1) + fibo(n - 2) = 2
 n = 1
 n = 0
 fibo(n - 1) = 0
 fibo(n - 2) = 0
 fibo(n - 1) + fibo(n - 2) = 8
 fibo(n - 1) = 0
 fibo(n - 2) = 0
 fibo(n - 1) + fibo(n - 2) = 8
 fibo(n - 1) = 0
 fibo(n - 2) = 0
 fibo(n - 1) + fibo(n - 2) = 8
 fibo(n - 1) = 0
 fibo(n - 2) = 0
 fibo(n - 1) + fibo(n - 2) = 8
 n = 1
 n = 0
 n = 1
 fibo(n - 1) = 0
 fibo(n - 2) = 0
 fibo(n - 1) + fibo(n - 2) = 2
 n = 1
 n = 0
 fibo(n - 1) = 0
 fibo(n - 2) = 0
 fibo(n - 1) + fibo(n - 2) = 3
 fibo(n - 1) = 0
 fibo(n - 2) = 0
 fibo(n - 1) + fibo(n - 2) = 3
 n = 1
 n = 0
 n = 1
Result = 13
if the parameter is 50.


