Find all maxima and minima of the function fx y exy subject

Find all maxima and minima of the function f(x, y) = e^xy subject to the constraint x^3 + y^3= 16.

Solution

Given that

f(x , y) = exy subject to the constraint x3 + y3 = 16

Let g(x , y) =  x3 + y3 = 16

Using legrange multipliers finding maxima and minima

f(x,y) = g(x,y)

< yexy , xexy > = < 3x2 , 3y2 >

  yexy = 3x2 , xexy = 3y2

   =  yexy/ 3x2 , = xexy / 3y2

Hence,

   yexy/ 3x2 = xexy / 3y2

On solving ,

x/y =1

x = y

x3 + y3 = 16

Substitute x = y in this equation

x3 + x3 = 16

2x3 = 16

x3 = 16/2

x3 = 8

x = 2

Hence,

x = y

y = 2

Substitute x = 2 , y = 2 in f(x , y) = exy

   f(2,2) = e2.2

      f(2,2) = e4

      f(2,2) = 54.598

Therefore,

The maxima of given function = 54.598 at  f(2,2)

The given function has no minimum

  

 Find all maxima and minima of the function f(x, y) = e^xy subject to the constraint x^3 + y^3= 16.SolutionGiven that f(x , y) = exy subject to the constraint x
 Find all maxima and minima of the function f(x, y) = e^xy subject to the constraint x^3 + y^3= 16.SolutionGiven that f(x , y) = exy subject to the constraint x

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site