Consider a binomial probability distribution with pequals040
Consider a binomial probability distribution with
pequals=0.40.4
and
nequals=99.
What is the probability of the following?
a)
exactly three successes
b)
less than three successes
c)
sevenseven
| a) | exactly three successes | 
| b) | less than three successes | 
| c) | sevensevenor more successes | 
Solution
a)
Note that the probability of x successes out of n trials is          
           
 P(n, x) = nCx p^x (1 - p)^(n - x)          
           
 where          
           
 n = number of trials =    9      
 p = the probability of a success =    0.4      
 x = the number of successes =    3      
           
 Thus, the probability is          
           
 P (    3   ) =    0.250822656 [ANSWER]
*****************
b)
Note that P(fewer than x) = P(at most x - 1).          
           
 Using a cumulative binomial distribution table or technology, matching          
           
 n = number of trials =    9      
 p = the probability of a success =    0.4      
 x = our critical value of successes =    3      
           
 Then the cumulative probability of P(at most x - 1) from a table/technology is          
           
 P(at most   2   ) =    0.231787008
           
 Which is also          
           
 P(fewer than   3   ) =    0.231787008 [ANSWER]
************************
c)
Using a cumulative binomial distribution table or technology, matching          
           
 n = number of trials =    9      
 p = the probability of a success =    0.4      
 x = our critical value of successes =    7      
           
 Then the cumulative probability of P(at most x - 1) from a table/technology is          
           
 P(at most   6   ) =    0.974965248
           
 Thus, the probability of at least   7   successes is  
           
 P(at least   7   ) =    0.025034752 [ANSWER]

