Are these trips equal in terms of monetary revenue Test at
Are these trips equal in terms of monetary revenue? Test at = .01 significance level. MountainDew: Average daily revenue = $1000.00; standard deviation = 20.0; n = 11 NewHorizon: Average daily revenue = $1150.00; standard deviation = 80.0; n = 13
Solution
Formulating the null and alternative hypotheses,              
               
 Ho:   u1 - u2   =   0  
 Ha:   u1 - u2   =/   0  
 At level of significance =    0.01          
 As we can see, this is a    two   tailed test.      
 Calculating the means of each group,              
               
 X1 =    1000          
 X2 =    1150          
               
 Calculating the standard deviations of each group,              
               
 s1 =    20          
 s2 =    80          
               
 Thus, the standard error of their difference is, by using sD = sqrt(s1^2/n1 + s2^2/n2):              
               
 n1 = sample size of group 1 =    11          
 n2 = sample size of group 2 =    13          
 Thus, df = n1 + n2 - 2 =    22          
 Also, sD =    22.99285386          
               
 Thus, the t statistic will be              
               
 t = [X1 - X2 - uD]/sD =    -6.523766076          
               
 where uD = hypothesized difference =    0          
               
 Now, the critical value for t is              
               
 tcrit =    +/-   2.818756061      
               
 Also, using p values,              
               
 p =    1.46026E-06          
               
 As |t| > 2.8187, and P < 0.01,    WE REJECT THE NULL HYPOTHESIS.          
Thus, there is significant difference in the mean daily revenues for these trips at 0.01 level. [CONCLUSION]
*****************************************************
Hi! If you use another method/formula in calculating the degrees of freedom in this t-test, please resubmit this question together with the formula/method you use in determining the degrees of freedom. That way we can continue helping you! Thanks!

