The annual incomes for 14 randomly selected people each with
The annual incomes for 14 randomly selected people, each with a bachelor\'s degree. Assume that the population of the monthly incomes in normally distributed.
What is the sample mean, x-bar?
What is the sample standard deviation, s?
Construct a 95% confidence interval for the population of mean µ.
| 54554 | 60027 | 60703 | 47381 | 62355 | 54528 | 22364 | 
| 63387 | 61082 | 46970 | 71126 | 56631 | 68945 | 40034 | 
Solution
a)
By technology,
X = sample mean = 55006.21429 [ANSWER]
***************
b)
By technology,
s = sample standard deviation = 12674.73377 [ANSWER]
****************
c)
 Note that              
               
 Lower Bound = X - t(alpha/2) * s / sqrt(n)              
 Upper Bound = X + t(alpha/2) * s / sqrt(n)              
               
 where              
 alpha/2 = (1 - confidence level)/2 =    0.025          
 X = sample mean =    55006.21429          
 t(alpha/2) = critical t for the confidence interval =    2.160368656          
 s = sample standard deviation =    12674.73377          
 n = sample size =    14          
 df = n - 1 =    13          
 Thus,              
               
 Lower bound =    47688.04088          
 Upper bound =    62324.38769          
               
 Thus, the confidence interval is              
               
 (   47688.04088   ,   62324.38769   ) [ANSWER]

