he sample data below have been collected based on a simple r
he sample data below have been collected based on a simple random sample from a normally distributed population. Complete parts a and b
5 6 0 9 3 2 9 3 8 6
a)Compute a 95 % confidence interval estimate for the population mean.
B) Show what the impact would be if the confidence level is increased to 98 %. Discuss why this occurs. Select the correct choice below and fill in the answer boxes to complete your choice.
Solution
a)
Note that              
               
 Lower Bound = X - t(alpha/2) * s / sqrt(n)              
 Upper Bound = X + t(alpha/2) * s / sqrt(n)              
               
 where              
 alpha/2 = (1 - confidence level)/2 =    0.025          
 X = sample mean =    5.1          
 t(alpha/2) = critical t for the confidence interval =    2.262157163          
 s = sample standard deviation =    3.0713732          
 n = sample size =    10          
 df = n - 1 =    9          
 Thus,              
               
 Lower bound =    2.902871971          
 Upper bound =    7.297128029          
               
 Thus, the confidence interval is              
               
 (   2.902871971   ,   7.297128029   ) [ANSWER]
**********************
b)
Note that              
               
 Lower Bound = X - t(alpha/2) * s / sqrt(n)              
 Upper Bound = X + t(alpha/2) * s / sqrt(n)              
               
 where              
 alpha/2 = (1 - confidence level)/2 =    0.01          
 X = sample mean =    5.1          
 t(alpha/2) = critical t for the confidence interval =    2.821437925          
 s = sample standard deviation =    3.0713732          
 n = sample size =    10          
 df = n - 1 =    9          
 Thus,              
               
 Lower bound =    2.359668581          
 Upper bound =    7.840331419          
               
 Thus, the confidence interval is              
               
 (   2.359668581   ,   7.840331419   )
As we can see, the interval became wider, and the margin of error became larger.
This is so because the critical t value becomes larger with larger confidence level.
This makes sense because you need to enclose more values to be \"more confident\" that you have the true mean.

