he sample data below have been collected based on a simple r

he sample data below have been collected based on a simple random sample from a normally distributed population. Complete parts a and b

5 6 0 9 3 2 9 3 8 6

a)Compute a 95 % confidence interval estimate for the population mean.

B) Show what the impact would be if the confidence level is increased to 98 %. Discuss why this occurs. Select the correct choice below and fill in the answer boxes to complete your choice.

Solution

a)

Note that              
              
Lower Bound = X - t(alpha/2) * s / sqrt(n)              
Upper Bound = X + t(alpha/2) * s / sqrt(n)              
              
where              
alpha/2 = (1 - confidence level)/2 =    0.025          
X = sample mean =    5.1          
t(alpha/2) = critical t for the confidence interval =    2.262157163          
s = sample standard deviation =    3.0713732          
n = sample size =    10          
df = n - 1 =    9          
Thus,              
              
Lower bound =    2.902871971          
Upper bound =    7.297128029          
              
Thus, the confidence interval is              
              
(   2.902871971   ,   7.297128029   ) [ANSWER]

**********************

b)

Note that              
              
Lower Bound = X - t(alpha/2) * s / sqrt(n)              
Upper Bound = X + t(alpha/2) * s / sqrt(n)              
              
where              
alpha/2 = (1 - confidence level)/2 =    0.01          
X = sample mean =    5.1          
t(alpha/2) = critical t for the confidence interval =    2.821437925          
s = sample standard deviation =    3.0713732          
n = sample size =    10          
df = n - 1 =    9          
Thus,              
              
Lower bound =    2.359668581          
Upper bound =    7.840331419          
              
Thus, the confidence interval is              
              
(   2.359668581   ,   7.840331419   )

As we can see, the interval became wider, and the margin of error became larger.

This is so because the critical t value becomes larger with larger confidence level.

This makes sense because you need to enclose more values to be \"more confident\" that you have the true mean.

he sample data below have been collected based on a simple random sample from a normally distributed population. Complete parts a and b 5 6 0 9 3 2 9 3 8 6 a)Co

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site