There are on average 8 visits per hour to an antique store 1
There are on average 8 visits per hour to an antique store.
1) What is the probability of fewer than 2 visits will be made in the next half hour?
2) What is the probability of more than 2 visits will be made in the next half hour?
3) What is the probability of at least 1 visit will be made in the next 15 minutes?
Solution
1.
Note that P(fewer than x) = P(at most x - 1).          
           
 Using a cumulative poisson distribution table or technology, matching          
           
 u = the mean number of successes = 8(1/2 hr) =   4      
           
 x = our critical value of successes =    2      
           
 Then the cumulative probability of P(at most x - 1) from a table/technology is          
           
 P(at most   1   ) =    0.091578194
           
 Which is also          
           
 P(fewer than   2   ) =    0.091578194 [ANSWER]
******************
2.
Note that P(more than x) = 1 - P(at most x).          
           
 Using a cumulative poisson distribution table or technology, matching          
           
 u = the mean number of successes = 8(1/2 hr)   4      
           
 x = our critical value of successes =    2      
           
 Then the cumulative probability of P(at most x) from a table/technology is          
           
 P(at most   2   ) =    0.238103306
           
 Thus, the probability of at least   3   successes is  
           
 P(more than   2   ) =    0.761896694 [ANSWER]
********************
3.
Note that the probability of x successes out of n trials is          
           
 P(x) = u^x e^(-u) / x!          
           
 where          
           
 u = the mean number of successes = 8(1/4 hr) =   2      
           
 x = the number of successes =    0      
           
 Thus, the probability is          
           
 P (    0   ) =    0.135335283
P(at least 1) = 1 - P(0) = 0.864664717 [ANSWER]

