This is the data for the questions I copied it from an excel

This is the data for the questions. I copied it from an excel file. You have 162 monthly values of retails sales of hardware stores (HW) in the US.

a) Forecast HW for October 2015 using a 3-month prior moving average technique.

b) Compute root mean square error for the in-sample forecast using the same technique as in part (a) above.

c) Find the 2-decimal point smoothing constant which gives teh best fit for (based on the root mean square error criterion) the in-sample forecast using the exponential smoothing technique.

d) How does roo mean square error for the exponential smoothing technique compare to its value for the 3-period prior moving average technique.

e) Forecast HW in July 2015 using the exponential smoothing technique using the smoothing constant you found in part c.

f) Estimate and report a linear trend component for the HW time series using the ordinary least squares (OLS) technique.

g) Compare the trend value of your series for September 2008 with its aactual value int hat month. What favtors might account for the difference betweent he trend value and the actual value of HW for September 2008.

h) Compute a seasonal index using a 12 month centered moving average fo the HW series. Based on your results, would you describe hardware as a seasonal business? Explain.

i) Do an in-sample forecast on Books sales using the multiplicative time series technique (assume the cyclical component is equal to 1 for every month).

j) Use the information contained in the following table to perform a forecast of HW for November and December 2015 using the multiplicative time series technique (Note: you will need to compute a trend comonent for these months using the equation you obtained in a.

t YR MO HW
1 2002 1 1154
2 2002 2 1094
3 2002 3 1292
4 2002 4 1534
5 2002 5 1685
6 2002 6 1600
7 2002 7 1555
8 2002 8 1467
9 2002 9 1322
10 2002 10 1403
11 2002 11 1398
12 2002 12 1458
13 2003 1 1185
14 2003 2 1110
15 2003 3 1338
16 2003 4 1492
17 2003 5 1747
18 2003 6 1670
19 2003 7 1622
20 2003 8 1544
21 2003 9 1492
22 2003 10 1507
23 2003 11 1443
24 2003 12 1524
25 2004 1 1197
26 2004 2 1138
27 2004 3 1421
28 2004 4 1636
29 2004 5 1801
30 2004 6 1736
31 2004 7 1689
32 2004 8 1571
33 2004 9 1535
34 2004 10 1496
35 2004 11 1489
36 2004 12 1591
37 2005 1 1247
38 2005 2 1173
39 2005 3 1445
40 2005 4 1691
41 2005 5 1805
42 2005 6 1776
43 2005 7 1615
44 2005 8 1613
45 2005 9 1575
46 2005 10 1632
47 2005 11 1606
48 2005 12 1703
49 2006 1 1343
50 2006 2 1279
51 2006 3 1554
52 2006 4 1755
53 2006 5 2004
54 2006 6 1877
55 2006 7 1752
56 2006 8 1726
57 2006 9 1598
58 2006 10 1654
59 2006 11 1691
60 2006 12 1750
61 2007 1 1451
62 2007 2 1380
63 2007 3 1710
64 2007 4 1777
65 2007 5 2092
66 2007 6 1965
67 2007 7 1726
68 2007 8 1735
69 2007 9 1589
70 2007 10 1667
71 2007 11 1678
72 2007 12 1739
73 2008 1 1420
74 2008 2 1340
75 2008 3 1539
76 2008 4 1806
77 2008 5 2083
78 2008 6 1968
79 2008 7 1797
80 2008 8 1698
81 2008 9 1611
82 2008 10 1695
83 2008 11 1610
84 2008 12 1677
85 2009 1 1360
86 2009 2 1244
87 2009 3 1517
88 2009 4 1753
89 2009 5 1985
90 2009 6 1788
91 2009 7 1627
92 2009 8 1545
93 2009 9 1480
94 2009 10 1573
95 2009 11 1485
96 2009 12 1649
97 2010 1 1304
98 2010 2 1259
99 2010 3 1553
100 2010 4 1777
101 2010 5 1875
102 2010 6 1761
103 2010 7 1658
104 2010 8 1544
105 2010 9 1494
106 2010 10 1564
107 2010 11 1672
108 2010 12 1741
109 2011 1 1355
110 2011 2 1272
111 2011 3 1539
112 2011 4 1796
113 2011 5 2093
114 2011 6 1977
115 2011 7 1817
116 2011 8 1842
117 2011 9 1688
118 2011 10 1774
119 2011 11 1768
120 2011 12 1800
121 2012 1 1491
122 2012 2 1432
123 2012 3 1799
124 2012 4 2023
125 2012 5 2330
126 2012 6 2035
127 2012 7 1810
128 2012 8 1771
129 2012 9 1606
130 2012 10 1804
131 2012 11 1780
132 2012 12 1753
133 2013 1 1479
134 2013 2 1402
135 2013 3 1595
136 2013 4 1825
137 2013 5 1965
138 2013 6 1844
139 2013 7 1738
140 2013 8 1726
141 2013 9 1604
142 2013 10 1744
143 2013 11 1680
144 2013 12 1730
145 2014 1 1565
146 2014 2 1497
147 2014 3 1757
148 2014 4 1877
149 2014 5 2075
150 2014 6 1925
151 2014 7 1904
152 2014 8 1848
153 2014 9 1797
154 2014 10 1956
155 2014 11 1850
156 2014 12 1931
157 2015 1 1756
158 2015 2 1686
159 2015 3 1994
160 2015 4 2162
161 2015 5 2276
162 2015 6 2144

Solution

Are you looking for a holt-winters forecast? I am not sure as to what do you mean by HW time-series

However, this video may help if you are looking for holt-winters method.

https://www.youtube.com/watch?v=qpiWJaeJPtA

If you have further doubts or need clarifications, feel free to ask.

This is the data for the questions. I copied it from an excel file. You have 162 monthly values of retails sales of hardware stores (HW) in the US. a) Forecast
This is the data for the questions. I copied it from an excel file. You have 162 monthly values of retails sales of hardware stores (HW) in the US. a) Forecast
This is the data for the questions. I copied it from an excel file. You have 162 monthly values of retails sales of hardware stores (HW) in the US. a) Forecast
This is the data for the questions. I copied it from an excel file. You have 162 monthly values of retails sales of hardware stores (HW) in the US. a) Forecast

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site