A onestage adiabatic compressor is taking gas k 125 at stan
Solution
Inlet pressure P1 = 14.7 psia
Inlet temperature T1 = 68 F = 528 R
T2 / T1 = (P2 / P1)(k-1)/k
T2 / 528 = (279.8 / 14.7)(1.25-1)/1.25
T2 = 951.8 R
Power consumption P = Cp (T2 - T1) = Cp*(951.8 - 528) = 423.8*Cp
Now for 3-stage compression for states 1-2, 2\'-3, 3\'-4,
T2 / T1 = (P2 / P1)(k-1)/k
T2 / 528 = r(1.25-1)/1.25..........Here is the pressure ratio of each stage
T3 / 528 = r(1.25-1)/1.25.
T4 / 528 = r(1.25-1)/1.25.
This gives T2 = T3 = T4
Also, T2\' = T3\' = T1
Power input = [Cp (T2 - T1) - R (T2\' - T2)] + [Cp (T3 - T2\') - R (T3\' - T3)] + Cp (T4 - T3\')
= [Cp (T2 - T1) - R (T1 - T2)] + [Cp (T2 - T1) - R (T1 - T2)] + Cp (T2 - T1)
= (3Cp + 2R)(T2 - T1)
Also, Cp - Cp / k = R
Power input = (3Cp + 2Cp (1 - 1/k))(T2 - T1)
= (5 - 2/k) Cp (T2 - T1)
= (5 - 2/k) Cp [528*r(1.25-1)/1.25 - 528]
= 3.4 Cp [528*r(1.25-1)/1.25 - 528]
We get, 423.8*Cp = 3.4 Cp [528*r(1.25-1)/1.25 - 528]
Solving this, r = 2.8855
Hence, Outlet presure = 2.8855*2.8855*(2.8855*14.7)
= 353.17 psia
