For the data given Fit a least squares line to the data Plo

For the data given :

-Fit a least squares line to the data.

-Plot the data and graph the line.

-Calculate r and r2; interpret their values.

-Is the model useful (90% confidence interval) for predicting y?

-Estimate y given x = 10. Use a 90% confidence interval

Y X
58.91917314 17.9441336
13.57450242 6.12632559
29.3510094 12.8002848
45.64305354 15.57287621
-2.648422623 8.695513665
44.06502304 12.80388374
50.20597577 14.24341375
30.07622849 5.649884292
37.53191814 12.02881596
39.98763409 13.4763698
46.96164978 19.19645139
25.60818927 9.168443517
42.66781837 13.52147073
33.77291567 6.092608631
39.12879011 11.56356009
43.07872857 14.30645052
43.51514269 9.524191495
19.97826821 1.344326967
44.85200986 18.00158661
36.10558182 9.339117519
8.74116488 5.553085772
62.22326432 11.92228699
19.10002051 4.344504869
4.429185513 6.03277689
33.18251152 4.634981732
37.69023567 17.93512977
32.82332528 7.377868327
47.79558313 15.74506664
31.4553294 1.182070999
33.75199949 12.46278751
21.86032694 8.275259269
57.83697505 13.76913395
20.31702021 8.661682752
26.10576109 5.95641473
26.73859946 0.082539129
11.46490278 12.56121459
30.5172699 19.83131481
42.65479476 14.86181506
58.11222346 16.9411625
78.01812341 12.94288059
51.01794935 18.95044451
13.87470654 14.55600802
54.42381195 19.23347452
13.21304338 6.226046222
18.18269123 2.14775948
5.081059876 2.040475183
29.01467642 11.42179127
13.78004308 1.962144154
4.037299486 0.557280575
36.08791397 17.42440261
10.82561657 1.535862587
60.75949037 11.86784676
19.2654877 13.26464288
30.71052795 5.894218568
18.28906623 1.723702036
44.0640593 15.24302873
49.28771824 16.84514569
71.7365424 17.6801154
1.591984571 0.024247438
41.25121241 16.64329523
17.70185656 0.979867578
38.63051186 0.762031575
-1.361124256 6.065775263
58.30213707 17.60707338
10.29320205 9.370296876
-12.80911099 0.589688381
63.99814441 15.14417208
39.89835626 11.26539367
29.46070879 9.772175717
26.74835913 6.872940569
12.07361556 11.06240389
25.6395985 7.992690392
21.14998145 4.61432529
20.7040192 1.259273205
36.98005302 14.00887369
0.718428855 3.864104412
28.07984886 12.78772697
30.17861878 9.251116269
90.30933506 18.68362385
-4.52484206 7.165764446
12.941613 3.248634124
42.11788439 8.150724049
51.59458 12.59120492
51.60946033 19.49341114
65.88231016 15.84169803
30.71155647 3.616634255
46.09816083 18.45406965
32.2485384 1.652796065
56.53126019 7.239351102
43.37319811 17.10232366
13.82991967 8.621716957
20.58527511 5.292266003
56.462476 14.62785029
36.2813413 15.16897518
14.05597424 3.870469984
29.26498968 12.70525191
41.37653997 9.339120222
23.19082164 7.864050797
8.636308408 1.909121706
23.70099472 8.285990079
23.97055423 11.4312186

Solution

The equation of the line best fit is given as:

Y = 2.2755 X + 9.5767

R = 0.67772

R2 = 0.4593

The values of R and R2 are pretty low. So, the model is not very accurate in predicting. the R2 determines the amount of regression explained by this line.

For X = 10, we have the predicted value of Y as:

Y-hat = (2.2755 * 10) + 9.5769

= 32.331

Hope this helps. Refer to the table for p-values and other statistics

Y X
58.91917314 17.94413360 SUMMARY OUTPUT
13.57450242 6.12632559
29.35100940 12.80028480 Regression Statistics
45.64305354 15.57287621 Multiple R 0.677728855
-2.64842262 8.69551367 R Square 0.459316402
44.06502304 12.80388374 Adjusted R Square 0.453854951
50.20597577 14.24341375 Standard Error 14.20313791
30.07622849 5.64988429 Observations 101
37.53191814 12.02881596
39.98763409 13.47636980 ANOVA
46.96164978 19.19645139 df SS MS F Significance F
25.60818927 9.16844352 Regression 1 16965.73 16965.73 84.10154 7.04E-15
42.66781837 13.52147073 Residual 99 19971.18 201.7291
33.77291567 6.09260863 Total 100 36936.91
39.12879011 11.56356009
43.07872857 14.30645052 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 90.0% Upper 90.0%
43.51514269 9.52419150 Intercept 9.57669929 2.841302 3.370533 0.001071 3.938941 15.21446 4.859027 14.29437
19.97826821 1.34432697 X 2.275473326 0.248125 9.170689 7.04E-15 1.78314 2.767806 1.863489 2.687457
44.85200986 18.00158661
36.10558182 9.33911752
8.74116488 5.55308577
62.22326432 11.92228699
19.10002051 4.34450487
4.42918551 6.03277689
33.18251152 4.63498173
37.69023567 17.93512977
32.82332528 7.37786833
47.79558313 15.74506664
31.45532940 1.18207100
33.75199949 12.46278751
21.86032694 8.27525927
57.83697505 13.76913395
20.31702021 8.66168275
26.10576109 5.95641473
26.73859946 0.08253913
11.46490278 12.56121459
30.51726990 19.83131481
42.65479476 14.86181506
58.11222346 16.94116250
78.01812341 12.94288059
51.01794935 18.95044451
13.87470654 14.55600802
54.42381195 19.23347452
13.21304338 6.22604622
18.18269123 2.14775948
5.08105988 2.04047518
29.01467642 11.42179127
13.78004308 1.96214415
4.03729949 0.55728058
36.08791397 17.42440261
10.82561657 1.53586259
60.75949037 11.86784676
19.26548770 13.26464288
30.71052795 5.89421857
18.28906623 1.72370204
44.06405930 15.24302873
49.28771824 16.84514569
71.73654240 17.68011540
1.59198457 0.02424744
41.25121241 16.64329523
17.70185656 0.97986758
38.63051186 0.76203158
-1.36112426 6.06577526
58.30213707 17.60707338
10.29320205 9.37029688
-12.80911099 0.58968838
63.99814441 15.14417208
39.89835626 11.26539367
29.46070879 9.77217572
26.74835913 6.87294057
12.07361556 11.06240389
25.63959850 7.99269039
21.14998145 4.61432529
20.70401920 1.25927321
36.98005302 14.00887369
0.71842886 3.86410441
28.07984886 12.78772697
30.17861878 9.25111627
90.30933506 18.68362385
-4.52484206 7.16576445
12.94161300 3.24863412
42.11788439 8.15072405
51.59458000 12.59120492
51.60946033 19.49341114
65.88231016 15.84169803
30.71155647 3.61663426
46.09816083 18.45406965
32.24853840 1.65279607
56.53126019 7.23935110
43.37319811 17.10232366
13.82991967 8.62171696
20.58527511 5.29226600
56.46247600 14.62785029
36.28134130 15.16897518
14.05597424 3.87046998
29.26498968 12.70525191
41.37653997 9.33912022
23.19082164 7.86405080
8.63630841 1.90912171
23.70099472 8.28599008
23.97055423 11.43121860
For the data given : -Fit a least squares line to the data. -Plot the data and graph the line. -Calculate r and r2; interpret their values. -Is the model useful
For the data given : -Fit a least squares line to the data. -Plot the data and graph the line. -Calculate r and r2; interpret their values. -Is the model useful
For the data given : -Fit a least squares line to the data. -Plot the data and graph the line. -Calculate r and r2; interpret their values. -Is the model useful
For the data given : -Fit a least squares line to the data. -Plot the data and graph the line. -Calculate r and r2; interpret their values. -Is the model useful
For the data given : -Fit a least squares line to the data. -Plot the data and graph the line. -Calculate r and r2; interpret their values. -Is the model useful

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site