in a survey of 612 males ages 1864 398 say they have gone to
in a survey of 612 males ages 18-64 398 say they have gone to the dentist in the past year. construct 90% and 95% confidence intervals for the population proportion
Solution
A)
90% CONFIDENCE:
Note that              
               
 p^ = point estimate of the population proportion = x / n =    0.650326797          
               
 Also, we get the standard error of p, sp:              
               
 sp = sqrt[p^ (1 - p^) / n] =    0.019276194          
               
 Now, for the critical z,              
 alpha/2 =   0.05          
 Thus, z(alpha/2) =    1.644853627          
 Thus,              
 Margin of error = z(alpha/2)*sp =    0.031706518          
 lower bound = p^ - z(alpha/2) * sp =   0.61862028          
 upper bound = p^ + z(alpha/2) * sp =    0.682033315          
               
 Thus, the confidence interval is              
               
 (   0.61862028   ,   0.682033315   ) [ANSWER]
**********************
B)
95% CONFIDENCE:
Note that              
               
 p^ = point estimate of the population proportion = x / n =    0.650326797          
               
 Also, we get the standard error of p, sp:              
               
 sp = sqrt[p^ (1 - p^) / n] =    0.019276194          
               
 Now, for the critical z,              
 alpha/2 =   0.025          
 Thus, z(alpha/2) =    1.959963985          
 Thus,              
 Margin of error = z(alpha/2)*sp =    0.037780646          
 lower bound = p^ - z(alpha/2) * sp =   0.612546151          
 upper bound = p^ + z(alpha/2) * sp =    0.688107443          
               
 Thus, the confidence interval is              
               
 (   0.612546151   ,   0.688107443   ) [ANSWER]

