Please solve the system Solve the system dxdt zabt1 Xmiddo
Please solve the system:
Solve the system: dx/dt = -z(a/bt+1) - Xmiddotg - B dy/dt = n y (a/bt+1) + 2.5 y/[1-k^2(1-e^-c/mt)]^2 [c middot e^-c/mt]Solution
Given dx/dt and dy/dt
let Y\'=dy/dt, X\'=dx/dt
X\'= -Z(a/bz+1) -Xg - B
Y\'=ny(a/bz+1) + 2.5y[c.e^-cz/m]/(1-k^2(1-e^(-c/mz)))
X\'\' differentiating with respect to t,
X\'\' = - g (1) = -g
Y\'\' = n.(a/bz+1) + 2.5[c.e^-cz/m]^2/(1-k^2(1-e^(-c/mz)))
differentiation dy/dt(y) = 1 so we get
= n.(a/bz+1) + 2.5[c.e^-cz/m]^2/(1-k^2(1-e^(-c/mz)))
from this we can write characteristic equation
c1 - c2 =0
x(t) = e^t.
for solving y we have
n.(a/bz+1) + 2.5[c.e^-cz/m]^2/(1-k^2(1-e^(-c/mz)))=0
From this all are constants so writing characteristic equation for this gives
(1-k^2(1-e^(-c/mz)))n.(a/bz+1) + 2.5[c.e^-cz/m]^2 =0
(1-k^2(1-e^(-c/mz)))n.(a/bz) + (1-k^2(1-e^(-c/mz)))n +2.5[c.e^-cz/m]^2 =0
taking characteristic equation we get
c1 + c2 =1
c1 - c2 =1
c1 = 1 and c2=0
x(t) = e^t , y(t) =e^t
![Please solve the system: Solve the system: dx/dt = -z(a/bt+1) - Xmiddotg - B dy/dt = n y (a/bt+1) + 2.5 y/[1-k^2(1-e^-c/mt)]^2 [c middot e^-c/mt]SolutionGiven d Please solve the system: Solve the system: dx/dt = -z(a/bt+1) - Xmiddotg - B dy/dt = n y (a/bt+1) + 2.5 y/[1-k^2(1-e^-c/mt)]^2 [c middot e^-c/mt]SolutionGiven d](/WebImages/2/please-solve-the-system-solve-the-system-dxdt-zabt1-xmiddo-973575-1761496542-0.webp)