Solve the triangle ABC if b 125 c 165 403 degree a Assum
Solve the triangle ABC if b = 125, c = 165, = 403 degree. a = Assume A is opposite side a, B is opposite side b, and C is opposite side c.
Solution
given b =125,c=165,B=40o
by law of sines
b/sinB =c/sinc
125/sin(40o) =165/sinC
sinC=(165/125)sin(40o)
sinC=0.84848
C=58o,122o
when B=40,C=58
A+B+C =180
A=180-40-58
A=82o
a/sinA =b/sinB
a/sin82o =125/sin40o
a =125(sin82o/sin40o)
a=192.6
when B=40,C=122
A+B+C =180
A=180-40-122
A=18o
a/sinA =b/sinB
a/sin18o =125/sin40o
a =125(sin18o/sin40o)
a=60.1
2 sets of solutions are
a=192.6 ,A=82o,C=58o
a=60.1 ,A=18o,C=122o
