Consider the following hypothesis test H0 25 Ha 25 A sample
Consider the following hypothesis test:
H0:  25
 Ha: > 25
A sample of 40 provided a sample mean of 26.4. The population standard deviation is 6.
a. Compute the value of the test statistic (to 2 decimals).
b. What is the p-value (to 4 decimals)?
c. At = .01, what is your conclusion?
p-value -
d. What is the rejection rule using the critical value?
Reject H0 if z -
What is your conclusion?
Solution
a)
Formulating the null and alternative hypotheses,              
               
 Ho:   u   <=   25  
 Ha:    u   >   25  
               
 As we can see, this is a    right   tailed test.      
               
               
 Getting the test statistic, as              
               
 X = sample mean =    26.4          
 uo = hypothesized mean =    25          
 n = sample size =    40          
 s = standard deviation =    6          
               
 Thus, z = (X - uo) * sqrt(n) / s =    1.475729575 [ANSWER, TEST STATISTIC]
*************************          
               
 B)
Also, the p value is              
               
 p =    0.070008252   [ANSWER, P VALUE]
***********************
c)
As P > 0.01, we FAIL TO REJECT THE NULL HYPOTHESIS.
**************************
d)
Thus, getting the critical z, as alpha =    0.01   ,      
 alpha =    0.01          
zcrit = +2.326347874
So, we reject Ho if z > 2.3263. [ANSWER]
***************************
As z < 2.3263, we FAIL TO REJECT THE NULL HYPOTHESIS.
There is no significant evidence that the mean is greater than 25. [CONCLUSION]
              
   

