Recall the Squeeze Theorem Suppose that for all n xn yn zn I

Recall the Squeeze Theorem:

Suppose that for all n, xn yn zn. If (xn) and (zn) both converge to L R, then (yn) also converges to L.

Louis Reasoner gives the following proof:

Using limit comparison theorems, since xn yn, for all n, then lim xn lim yn, and so L lim yn. Similarly, since yn zn, for all n, then lim yn lim zn, so lim yn L. Putting the 2 inequalities together, lim yn = L, Q.E.D.

What’s wrong with this proof?

Solution

Nothing is wrong. It is correct.

Recall the Squeeze Theorem: Suppose that for all n, xn yn zn. If (xn) and (zn) both converge to L R, then (yn) also converges to L. Louis Reasoner gives the fol

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site