Assume that adults have IQ scores that are normally distribu
Assume that adults have IQ scores that are normally distributed with a mean of
105
and a standard deviation
15.
Find
Upper P9,
which is the IQ score separating the bottom
9%
from the top
91%
Solution
First, we get the z score from the given left tailed area. As          
           
 Left tailed area =    0.09      
           
 Then, using table or technology,          
           
 z =    -1.340755034      
           
 As x = u + z * s,          
           
 where          
           
 u = mean =    105      
 z = the critical z score =    -1.340755034      
 s = standard deviation =    15      
           
 Then          
           
 x = P9 =    84.88867449   [ANSWER]  

