A radar unit is used to measure speeds of cars on a motorway
A radar unit is used to measure speeds of cars on a motorway. The speeds are normally distributed with a mean of 90 km/hr and a standard deviation of 10 km/hr. What is the probability that a car picked at random is traveling at 80 km/hr?
Solution
Did you mean \"at most 80 km/hr\"?
If so, then this is the solution:
We first get the z score for the critical value. As z = (x - u) / s, then as          
           
 x = critical value =    80      
 u = mean =    90      
           
 s = standard deviation =    10      
           
 Thus,          
           
 z = (x - u) / s =    -1      
           
 Thus, using a table/technology, the left tailed area of this is          
           
 P(z <   -1   ) =    0.158655254 [ANSWER]
*********************************
If you meant \"at least 80 km/hr\", this is the solution:
We first get the z score for the critical value. As z = (x - u) / s, then as          
           
 x = critical value =    80      
 u = mean =    90      
           
 s = standard deviation =    10      
           
 Thus,          
           
 z = (x - u) / s =    -1      
           
 Thus, using a table/technology, the right tailed area of this is          
           
 P(z >   -1   ) =    0.841344746 [ANSWER]
*********************************
If you really meant what you wrote, the answer is 0, because we need an interval to get an area under the normal curve.

