A research engineer for a tire manufacturer is investigating
Solution
a)
Formulating the null and alternative hypotheses,              
               
 Ho:   u   <=   61000  
 Ha:    u   >   61000  
               
 As we can see, this is a    right   tailed test.      
               
               
 Getting the test statistic, as              
               
 X = sample mean =    63245          
 uo = hypothesized mean =    61000          
 n = sample size =    10          
 s = standard deviation =    3035          
               
 Thus, t = (X - uo) * sqrt(n) / s =    2.339147726          
               
 Thus, getting the critical t,              
 df = n - 1 =    9          
 tcrit =    +   1.833112933      
Thus, we reject Ho if t > 1.8331.
               
 Comparing t > 1.8331, we   REJECT THE NULL HYPOTHESIS.          
Thus, there is significant evidence that the mean tire life is greater than 61000 km. [CONCLUSION]
**********************
b)
Lower Bound = X - t(alpha) * s / sqrt(n)              
       
               
 where              
 alpha = (1 - confidence level)=    0.05          
 X = sample mean =    63245          
 t(alpha) = critical t for the confidence interval =    1.833112933          
 s = sample standard deviation =    3035          
 n = sample size =    10          
 df = n - 1 =    9          
 Thus,              
               
 Lower bound =    61485.66754          
              
 Thus, the confidence interval is u > 61485.66754. [ANSWER]
**************************
c)
As the lower bound of the interval above is still greater than 61000, then there is significant evidence at 0.05 level that the mean tire life is greater than 61000 km. [CONCLUSION]

