x t ax1 t bx2 t Prove that y t 2 pi x t is linearSolution
x (t) = ax_1 (t) + bx_2 (t) Prove that y (t) = 2 pi x (t) is linear.
Solution
Given Y(t)=2*pi*X(t);
For input X1(t) output Y1(t)=2*pi*X1(t);
For input X2(t) output Y2(t)=2*pi*X2(t);
For input X3(t) =a*X1(t)+b*X2(t) output
Y3(t)=2*pi*X3(t);
Y3(t)=2*pi*(a*X1(t)+b*X2(t)) ;
Y3(t)=2*pi*a*X1(t)+2*pi*b*X2(t);
Y3(t)=aY1(t)+b*Y2(t) ;
The linear combination of inputs gives linear combination of its individual outputs Hence system is linear
