At the instant shown bar AB has a constant angular velocity
Solution
Relative position vectors
r B/A = - 0.2 j
r D/B = 0.16 i
r DE= -0.06 i – 0.12 j
Angular velocity: AB = 4 rad/s CW, DE = 2.5 rad/s CCW, BD = 6.67 rad/s CW
Angular acceleration: AB = 0 (As AB has the constant velocity), BD = BDk, DE = DEk
Where “” is the angular acceleration and “” is in vector form
Now for Bar AB ( Rotation about A) :
aB = AB×r B/A- AB 2 × r B/A
= 0 – (42)(- 0.2 j )
= 3.2 j
Now for Bar BD ( Rotation about B + Translation with B)
aD = aB + BD×r D/B - BD 2 × r D/B
= 3.2 j + BDk × 0.16 i – (6.67)2 (0.16 i)
= 3.2 j + 0.16 BD j – 7.12 i
= – 7.12 i + (3.2 + 0.16 BD) j -------------------------------------------- (1)
Now for Bar DE ( Rotation about E)
aD = DE×r D/E - DE 2 × r D/E
= DE k × (-0.06 i – 0.12 j) – (2.5)2 (-0.06 i – 0.12 j)
= -0.06 DE j + 0.12 DE i + 0.375 i + 0.75 j
= (0.12 DE + 0.375) i + (0.75 -0.06 DE) j -------------------------------------------- (2)
Now, equating like components of from equation 1 and 2
– 7.12 = 0.12 DE + 0.375
Or DE = - 62.46 rad/s2 (Angular acceleration of bar DE)
And
3.2 + 0.16 BD = 0.75 -0.06 DE
Or BD = - 38.75 rad/s2 (Angular acceleration of bar BD)
