Verify the idenity 1 1 1sin2y 1 tan2y 2 1 tan2x 1 tan2x
Verify the idenity:
1) (1/ 1-sin2y) = 1 + tan2y
2) (1+ tan2x) / (1 - tan2x) = (1/ cos2x - sin2x)
3) (sin x + cos x) / (sec x + csc x ) = sinxcosx
4) (cos^2 + tan^2x - 1) / (sin^2x) = tan^2x
5) (sin x-1) / (sin x+1) / (-cos^2x) / (sin x+1)^2
Solution
1) (1/ 1-sin2y)
=(1/ cos2y)
=(sin2y +cos2y)/cos2y.........................[since sin2y +cos2y =1]
=(sin2y/cos2y) +(cos2y/cos2y)
=(siny/cosy)2 +1
=tan2y +1
=1+tan2y
2)(1+ tan2x) / (1 - tan2x)
=(1+ (sinx/cosx)2) / (1 - (sinx/cosx)2)
=[((cosx)2+ (sinx)2)/(cosx)2] / [((cosx)2 - (sinx)2)/(cosx)2]
=[((cosx)2+ (sinx)2)] / [((cosx)2 - (sinx)2)]
=1/((cosx)2 - (sinx)2)
3)3) (sin x + cos x) / (sec x + csc x )
= (sin x + cos x) / ((1/cosx) + (1/sinx) )
= (sin x + cos x) / ((sinx+cosx)/(cosx sinx) )
=1/(1/(sinx cosx))
=cosxsinx
