Using partial fractions method solve the initial value probl
Using partial fractions method solve the initial value problem y\"-y\'-6y=0 given y(0)=6 and y’(0)=13.
Please show work. Thanks!
Solution
We take laplace transform
L(y\')=sY-y(0)=sY-6
L(y\'\')=s^2Y-sy(0)-y\'(0)=s^2Y-6s-13
Substituting gives
s^2Y-6s-13-sY+6-6Y=0
(s^2-s-6)Y=6s+7
(s-3)(s+2)Y=6s+7
Let,
6s+7=a(s-3)+b(s+2)
So,
6=a+b
7=-3a+2b
Solving gives, b=5,a=1
So,
(s-3)(s+2)Y=(s-3)+5(s+2)
Y=1/(s+2)+5/(s-3)
Taking inverse laplace tranform gives
y=e^{-2t}+5e^{3t}
