Find a general solution of the system of equations dxdt x2y
Find a general solution of the system of equations:
dx/dt =x2y
dy/dt =2x+y
Solution
From first equation
y=(x-x\')/2
y\'=(x\'-x\'\')/2=2x+y=2x+(x-x\')/2
(x\'-x\'\')/2=2x+(x-x\')/2
x\'-x\'\'=4x+x-x\'
x\'\'-2x\'+5x=0
We have a linear homogeneous ode with constant coefficients so solution is of the form:x=e^{kt}
Substituting gives
k^2-2k+5=0
Solving gives:
k=1+2i,k=1-2i
So,
x=e^t(A sin(2t)+B cos(2t))
y=(x-x\')/2
x\'=x+e^t(2A cos(2t)-2B sin(2t))
(x-x\')/2=e^t(A cos(2t)-B sin(2t))
y=e^t(A cos(2t)-B sin(2t))
