Give the exact real number value or an algebraic expression
Give the exact real number value or an algebraic expression for the following. sin (2 tan^-1 12/5) sin (sec^-1 u/2)
Solution
a)sin(2tan-112/5)
sin2x =2sinx cosx
=2sin(tan-112/5)cos(tan-112/5)
hypotenuse =sqrt[oppositeside2+adjacent side2]=sqrt[122+52]=13
=2sin(sin-112/13)cos(cos-15/13)
=2(12/13)(5/13)
=120/169
b)sin(sec-1(u/2))
sin(cos-1(2/u))
oppositeside =sqrt[hypotenuse2 -adjacent side2]=sqrt[u2-22]=sqrt[u2-4]
sin(sin-1(sqrt[u2-4]/u))
=(sqrt[u2-4])/u
