Set up tables and verify each identity i tanA cotA sin2A asi
Set up tables and verify each identity.
i. tanA cotA sin2A asin (B0) bcos where C arctan. a 0 sin (B0 CSolution
i.) taking LHS
tan A + cot A,
we know tan A=sin A/cosA and cot A= cosA/sin A
so,
sinA/cosA+cosA/sinA= (sin^2 A+cos^2 A)/(sinA cosA)
we know sin^2 A+cos^2 A=1
so,
1/sinA cosA= 2/2sinA cos A= 2/sin2A because sin2A=2 sinA cosA
hence LHS=RHS hence proved
