Problem 2 The position P of a particle moving in an xy plane
Solution
the position vector is,
r = [3t^3 - 5t]i^ + [7 - 8t^4] j^
at t = 2.10 s, the position is,
r = [3(2.1)^3 - 5(2.1)]i^ + [7 - 8(2.1)^4] j^)
= [17.283 i^ -148.5848 j^] m ........ in vector notation
magnitude: r = sqrt[17.283*17.283 + 148.5848*148.5848] = 149.58 m
(b)
the velocity is,
v = dr/dt
= d/dt{[3t^3 - 5t]i^ + [7 - 8t^4] j^}
= [9t^2 - 5]i^ + [ - 32t^3] j^
at t = 2.10 s, the velocity is,
v = [9*2.1^2 - 5]i^ + [ - 32*2.1^3] j^
= [34.69 i^ -296.352 j^] m/s ........in vector notation
magnitude: v = sqrt[34.69*34.69 + 296.352*296.352] = 298.37 m/s
-------------
the acceleration is,
a = dv/dt
=ddt{[9t^2 - 5]i^ + [ - 32t^3] j^}
= 18t i^ - 96t^2
at t = 2.10 s, the acceleration is,
a = 18*2.10 i^ - 96*2.1^2
= [37.8 i^ - 423.36 j^] m/s^2 ....... in vector notation
magnitude: a = 425 m/s^2
(d)
angle = 360 - tan-1[-423.36/37.8] = 276o

