Find the solution of the initial value problem by method of

Find the solution of the initial value problem, by method of undeterrmined coefficients,

y\'\'-2y\'-3y=3te^(2t) y(0)=1 y\'(0)=6

Solution

Given that

  y\'\'-2y\'-3y=3te(2t) , y(0)=1 , y\'(0)=6

D-operator form is ,

d2y/dt2 - 2dy/dt -3y = 3te(2t).....................................................1

( D2 - 2D -3 )y = 3te(2t)

The auxialary equation is ,

m2 - 2m - 3 = 0

( m - 3 ) ( m + 1 ) = 0

m = 3 , -1

The roots are real and imaginary

The complementary function is ,

yc = c1e3t + c2e(-1)t

  yc = c1e3t + c2e-t

For non homogeneous part g(t) =  3te(2t),

let the perticular solution is , yp = e2t( At + B )

    d2/dt2( e2t( At + B ) )  - 2d/dt ( e2t( At + B ) ) - 3 ( e2t( At + B ) ) = 3te(2t)....................2

   d/dt( e2t( At + B ) )  = A.d/dt( te2t) + B d/dt( e2t)

= A[ d/dt(t).e2t + t.d/dt(e2t) ]+ B. e2t.2 [since, (f.g)\' = f\'.g\' , d/dt(eax)=aeax ]

= A[ 1.e2t + t.e2t.2 ] + 2Be2t

   = Ae2t + 2Ate2t + 2Be2t

d2/dt2( e2t( At + B ) )  = d/dt ( Ae2t + 2Ate2t + 2Be2t )  

   = A.d/dt(e2t) +  2A.d/dt(te2t) + 2B.d/dt(e2t)

= A.e2t.2 + 2A[ e2t + 2t.e2t ] + 2B.e2t.2

= 2Ae2t + 2Ae2t +  2Ate2t + 4Be2t

= 4Ae2t +  2Ate2t + 4Be2t

From 2

   d2/dt2( e2t( At + B ) )  - 2d/dt ( e2t( At + B ) ) - 3 ( e2t( At + B ) ) = 3te(2t)

     4Ae2t +  2Ate2t + 4Be2t - 2 [ Ae2t + 2Ate2t + 2Be2t ] - 3Ate2t - 3Be2t = 3te(2t)

      4Ae2t +  2Ate2t + 4Be2t - 2Ae2t- 4Ate2t - 4Be2t - 3Ate2t - 3Be2t = 3te(2t)

2Ae2t - 3Ate2t - 3Be2t = 3te(2t)

Equating the co-efficients

( 2A - 3B ) = 0

-3A = 3

A = -1

Substitute B in  ( 2A - 3B ) = 0

2(-1) - 3B = 0

-3B = 2

B = -2/3

Hence,

The perticular solution is , yp = e2t( At + B )

  yp = e2t( (-1)t + (-2/3) )

yp = e2t ( -t - (2/3) )

General solution is ,

y(t) = yc + yp

y(t) =c1e3t + c2e-t + e2t ( -t - (2/3) )...............................3

y(0) = 1

From equation 3

y(t) =c1e3t + c2e-t + e2t ( -t - (2/3) ).

  y(0) =c1e3(0) + c2e-0 + e2(0) ( -0 - (2/3) ).

1 = c1 +c2 - (2/3)

c1 +c2 - (2/3) = 1 -> c1 + c2 = 1 +(2/3) = 5/3 ........................................4

y\'(0) = 6

y(t) =c1e3t + c2e-t - te2t - (2/3)e2t

y\'(t) = c1e3t.3 + c2e-t.(-1) - [ e2t + 2t.e2t ] - (2/3)e2t.2

y\'(t) = 3c1e3t -  c2e-t - e2t -  2t.e2t - (4/3)e2t

y\'(0) =3c1e3(0) -  c2e-(0) - e2(0) -  2(0).e2(0) - (4/3)e2(0)

6 = 3c1 - c2 - 1 - 0 - (4/3)

6 = 3c1 - c2 -1 - 4/3

3c1 - c2 = -7 - 4/3

3c1 - c2 = -25/3 ................................5

On solving equations 4 and 5

c1 = -5/3 , c2 = 10/3

Hence,

  y(t) =c1e3t + c2e-t + e2t ( -t - (2/3) )

= -5/3e3t + (10/3)e-t +  e2t ( -t - (2/3) )

Therefore,

General solution is ,  y(t) = (-5/3)e3t + (10/3)e-t +  e2t ( -t - (2/3) )

Find the solution of the initial value problem, by method of undeterrmined coefficients, y\'\'-2y\'-3y=3te^(2t) y(0)=1 y\'(0)=6SolutionGiven that y\'\'-2y\'-3y=
Find the solution of the initial value problem, by method of undeterrmined coefficients, y\'\'-2y\'-3y=3te^(2t) y(0)=1 y\'(0)=6SolutionGiven that y\'\'-2y\'-3y=
Find the solution of the initial value problem, by method of undeterrmined coefficients, y\'\'-2y\'-3y=3te^(2t) y(0)=1 y\'(0)=6SolutionGiven that y\'\'-2y\'-3y=

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site