Find the solution of the initial value problem by method of
Find the solution of the initial value problem, by method of undeterrmined coefficients,
y\'\'-2y\'-3y=3te^(2t) y(0)=1 y\'(0)=6
Solution
Given that
y\'\'-2y\'-3y=3te(2t) , y(0)=1 , y\'(0)=6
D-operator form is ,
d2y/dt2 - 2dy/dt -3y = 3te(2t).....................................................1
( D2 - 2D -3 )y = 3te(2t)
The auxialary equation is ,
m2 - 2m - 3 = 0
( m - 3 ) ( m + 1 ) = 0
m = 3 , -1
The roots are real and imaginary
The complementary function is ,
yc = c1e3t + c2e(-1)t
yc = c1e3t + c2e-t
For non homogeneous part g(t) = 3te(2t),
let the perticular solution is , yp = e2t( At + B )
d2/dt2( e2t( At + B ) ) - 2d/dt ( e2t( At + B ) ) - 3 ( e2t( At + B ) ) = 3te(2t)....................2
d/dt( e2t( At + B ) ) = A.d/dt( te2t) + B d/dt( e2t)
= A[ d/dt(t).e2t + t.d/dt(e2t) ]+ B. e2t.2 [since, (f.g)\' = f\'.g\' , d/dt(eax)=aeax ]
= A[ 1.e2t + t.e2t.2 ] + 2Be2t
= Ae2t + 2Ate2t + 2Be2t
d2/dt2( e2t( At + B ) ) = d/dt ( Ae2t + 2Ate2t + 2Be2t )
= A.d/dt(e2t) + 2A.d/dt(te2t) + 2B.d/dt(e2t)
= A.e2t.2 + 2A[ e2t + 2t.e2t ] + 2B.e2t.2
= 2Ae2t + 2Ae2t + 2Ate2t + 4Be2t
= 4Ae2t + 2Ate2t + 4Be2t
From 2
d2/dt2( e2t( At + B ) ) - 2d/dt ( e2t( At + B ) ) - 3 ( e2t( At + B ) ) = 3te(2t)
4Ae2t + 2Ate2t + 4Be2t - 2 [ Ae2t + 2Ate2t + 2Be2t ] - 3Ate2t - 3Be2t = 3te(2t)
4Ae2t + 2Ate2t + 4Be2t - 2Ae2t- 4Ate2t - 4Be2t - 3Ate2t - 3Be2t = 3te(2t)
2Ae2t - 3Ate2t - 3Be2t = 3te(2t)
Equating the co-efficients
( 2A - 3B ) = 0
-3A = 3
A = -1
Substitute B in ( 2A - 3B ) = 0
2(-1) - 3B = 0
-3B = 2
B = -2/3
Hence,
The perticular solution is , yp = e2t( At + B )
yp = e2t( (-1)t + (-2/3) )
yp = e2t ( -t - (2/3) )
General solution is ,
y(t) = yc + yp
y(t) =c1e3t + c2e-t + e2t ( -t - (2/3) )...............................3
y(0) = 1
From equation 3
y(t) =c1e3t + c2e-t + e2t ( -t - (2/3) ).
y(0) =c1e3(0) + c2e-0 + e2(0) ( -0 - (2/3) ).
1 = c1 +c2 - (2/3)
c1 +c2 - (2/3) = 1 -> c1 + c2 = 1 +(2/3) = 5/3 ........................................4
y\'(0) = 6
y(t) =c1e3t + c2e-t - te2t - (2/3)e2t
y\'(t) = c1e3t.3 + c2e-t.(-1) - [ e2t + 2t.e2t ] - (2/3)e2t.2
y\'(t) = 3c1e3t - c2e-t - e2t - 2t.e2t - (4/3)e2t
y\'(0) =3c1e3(0) - c2e-(0) - e2(0) - 2(0).e2(0) - (4/3)e2(0)
6 = 3c1 - c2 - 1 - 0 - (4/3)
6 = 3c1 - c2 -1 - 4/3
3c1 - c2 = -7 - 4/3
3c1 - c2 = -25/3 ................................5
On solving equations 4 and 5
c1 = -5/3 , c2 = 10/3
Hence,
y(t) =c1e3t + c2e-t + e2t ( -t - (2/3) )
= -5/3e3t + (10/3)e-t + e2t ( -t - (2/3) )
Therefore,
General solution is , y(t) = (-5/3)e3t + (10/3)e-t + e2t ( -t - (2/3) )


