Sin1 2x tan1 x pi2Solutionsin12x tan1x pi2 let sin12x y
Sin^-1 2x + tan^-1 x = pi/2
Solution
sin^-1(2x) + tan^-1x = pi/2
let sin^-1(2x) = y
siny = 2x
tany = 2x/sqrt(4x^2 -1)
y = tan^-1[2x/sqrt(4x^2 -1)]
So, sin^-1(2x) + tan^-1x = pi/2
tan^-1[2x/sqrt(4x^2 -1)] + tan^-1x = pi/2
we use the identity : tan^-1a +tan^-1b = tan^-1[ (a +b)/(1 -ab)]
So, tan^-1[ (a +b)/(1 -ab)] = pi/2
Now RHS = pi/2
1 -ab =0
1 = ab
2x*x/sqrt(4x^2 -1)*x =1
2x^2 = sqrt(4x^2 -1)
squaring both sides:
4x^4 = 4x^2 -1
4x^4 -4x^2 +1 =0
after solving the equation :x^2 = 1/2
x = +/- 1/sqrt2
![Sin^-1 2x + tan^-1 x = pi/2Solutionsin^-1(2x) + tan^-1x = pi/2 let sin^-1(2x) = y siny = 2x tany = 2x/sqrt(4x^2 -1) y = tan^-1[2x/sqrt(4x^2 -1)] So, sin^-1(2x) Sin^-1 2x + tan^-1 x = pi/2Solutionsin^-1(2x) + tan^-1x = pi/2 let sin^-1(2x) = y siny = 2x tany = 2x/sqrt(4x^2 -1) y = tan^-1[2x/sqrt(4x^2 -1)] So, sin^-1(2x)](/WebImages/4/sin1-2x-tan1-x-pi2solutionsin12x-tan1x-pi2-let-sin12x-y-977242-1761501365-0.webp)