Find the solution of the given initial value problem Ty 8y
Find the solution of the given initial value problem. Ty\' + 8y = t^2 - t + 1, y(1) = 1/8, t > 0 y(t) = t^2/4 - t/3 + 1/2 - 7/24t^8
Solution
we can rewrite as
y\'+8y/t=t-1+1/t
Integrating factor is t^8
Multiplying by this integrating factor gives
t^8y\'+8yt^7=t^9-t^8+t^7
(yt^8)\'=t^9-t^8+t^7
Integrating gives
yt^8=t^10/10-t^9/9+t^8/8+C
y(1)=1/8
1/8=1/10-1/9+1/8+C
C=1/9-1/10=1/90
yt^8=t^10/10-t^9/9+t^8/8+1/90
y=t^2/10-t/9+1/8+1/(90t^8)
