Find the function satisfying the differential equation ftft5
Find the function satisfying the differential equation
f?(t)?f(t)=5t
and the condition f(3)=3 .
f(t)=
Solution
f(t) = y
y\' - y = 5t
IF = ( e^int p(t)dt)
IF = (e^int(-1 dt))
IF = e^(-t)
Solution:
y*IF = int (IF * q(t) dt)
y * e^(-t) = int (e^(-t) * 5t dt)
take -t = x
dt = -dx
y * e^(x) = int (e^x * -5x * -dx)
ye^x = int (e^x (5x) dx)
ye^x = 5 int (e^x (x-1 + 1) dx)
ye^x = 5 (e^x (x-1)) + c
ye^x = 5x*e^x - 5e^x + c
take x=-t
ye^(-t) = -5t*e^(-t) -5e^(-t) + c
y = -5t - 5 + ce^t
y(3) = 3
3 = -5*3 - 5 + ce^3
23 = ce^3
c = 23/e^3
y = -5t - 5 + ce^t
y = -5t -5 + 23e^(t-3)
