Explain how to solve for x the angle tanxsinx292000Solutiont

Explain how to solve for x (the angle) tanx((sinx)^2)=92000

Solution

tanx((sinx)^2)=92000

but tanx = sinx/cosx

cosx = sqrt(1- sin^2 x)

so sinx /sqrt(1- sin^2 x) . ((sinx)^2) = 92000

(sinx)^3 = 92000 sqrt (1- sin^2 x)

squaring on both sides

(sinx)^6 = (92000)^2 (1-sin^2x)

(sinx)^6 +(92000)^2 (sinx)^2 -(92000)^2 =0

now we have to solve this

Simplified form is:

(sinx)^6 +8464000000 x^2 - 8464000000 =0

The solutions of this equation are:

X1 = 1

X2 = -1

X3 = -214.47552+214.47669*i

X4 = -214.47552-214.47669*i

X5 = 214.47552+214.47669*i

X6 = 214.47552-214.47669*i

so we leave all the \'i; values sinx = 1 or x= -1

so x = pi/2 or -pi/2

Explain how to solve for x (the angle) tanx((sinx)^2)=92000Solutiontanx((sinx)^2)=92000 but tanx = sinx/cosx cosx = sqrt(1- sin^2 x) so sinx /sqrt(1- sin^2 x) .

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site