Question 1 Use rules for Discrete Probability Distribution t
Question 1
Use rules for Discrete Probability Distribution
to find missing value in this table:
0.30
0.25
0.20
0.15
1 points
Question 2
Find Expected Value for the random variable
with the following probability distribution:
0.8
1.6
2.1
3.0
1 points
Question 3
Use Binomial Distribution (formula or Appendix Table)
to find probability that you flip the coin 6 times
and will obtain Head exactly 4 times.
Appendix Table for Binomial Distribution
0.500
0.234
0.356
0.412
1 points
Question 4
Use Appendix Tables for Binomial Distribution
to find probability that with n = 10 and p = 0.2
x will be less than 3: P(x < 3) (x = 0,1,2)
Appendix Table for Binomial Distribution
0.245
0.348
0.677
0.724
1 points
Question 5
Use Appendix Tables for Binomial Distribution
to find probability that with n = 6 and p = 0.2
x will be at least 3: P(x ? 3) (x = 3,4,5,6).
Appendix Table for Binomial Distribution
0.464
0.351
0.284
0.099
| x | 0 | 1 | 2 | 3 | 4 |
| P(x) | 0.15 | 0.25 | ... | 0.20 | 0.10 |
Solution
(1) Since sum of f(x)=1, 1-0.15-0.25-0.2-0.1=0.3
Answer: 0.3
-------------------------------------------------------------------------------------------------------------------
(2) Expected value= sum of x*f(x)
=0*0.1+1*0.2+2*0.3+3*0.3+4*0.1
=2.1
Answer: 2.1
-------------------------------------------------------------------------------------------------------------------
(3) P(Head) = 0.5
Given X~Binomial(n=6, p=0.5)
P(X=x)=6Cx*(0.5^6)
So the probability is
P(X=4) =6C*(0.5^6) = 0.234375
Answer: 0.234
-------------------------------------------------------------------------------------------------------------------
(4) Given X~Binomial(n=10, p = 0.2)
P(X=x)=10Cx*(0.2^x)*(0.8^(10-x))
So P(x < 3) = P(X=0)+P(X=1)+P(X=2)
=10C0*(0.2^0)*(0.8^(10-0))+..+10C2*(0.2^2)*(0.8^(10-2))
=0.6777995
Answer: 0.677
-------------------------------------------------------------------------------------------------------------------
(5) Given X~Binomial(n=6, p = 0.2)
P(X=x)=6Cx*(0.2^x)*(0.8^(6-x))
So P(X>=3)= P(X=3)+P(X=4)+P(X=5)+P(X=6)
=6C3*(0.2^3)*(0.8^(6-3))+...+6C6*(0.2^6)*(0.8^(6-6))
=0.09888
Answer: 0.099


