Find the most general realvalued solution to the linear syst
Find the most general real-valued solution to the linear system of differential equations x\' = [1 2 -2 5] x. [x_1(t) x_2(t)] = c_1 [] + c_2 []
Solution
x_1\'=x_1-2x_2\\\\
x_2\'=2x_1+5x_2\\\\
Adding the two equations gives\\\\
x_1\'+x_2\'=3(x_1+x_2)
Integrating gives
x_1+x_2=c_1e^{3t}
x_1=c_1e^{3t}-x_2
x_2\'=2x_1+5x_2=2(c_1e^{3t}-x_2)+5x_2=3x_2+2c_1e^{3t}
x_2\'-3x_2=2c_1e^{3t}
Integrating factor is: e^{-3t}
Multiplying gives
(x_2\'-3x_2)e^{-3t}=2c_1
(x_2e^{-3t})\'=2c_1
Integrating gives
x_2e^{-3t}=2c_1t+c_2
x_2=2c_1te^{3t}+c_2e^{3t}
x_1=c_1e^{3t}-x_2=-c_1te^{3t}-c_2e^{3t}
x_1=-c_1te^{3t}-c_2e^{3t}
![Find the most general real-valued solution to the linear system of differential equations x\' = [1 2 -2 5] x. [x_1(t) x_2(t)] = c_1 [] + c_2 []Solutionx_1\'=x_ Find the most general real-valued solution to the linear system of differential equations x\' = [1 2 -2 5] x. [x_1(t) x_2(t)] = c_1 [] + c_2 []Solutionx_1\'=x_](/WebImages/4/find-the-most-general-realvalued-solution-to-the-linear-syst-979323-1761502607-0.webp)