During cold weather shop floors or restaurant patios arc som
Solution
solution:
1)here we have to solve problem by finding value of r as ratio of two radius R1 and R2
r=R1/R2=.25
hence shape factor are
F12=F13=.5
F21=r=.25
F22=.3433
F23=1-.3433-.25=.4066
2)here heat transfer between heat tube and surface is
Q=5.67*10^-8[T1^4-T3^4]/[(1-e1/e1*A1)+(1/A1*F13)+(1-e3/e3*A3)]
Q13=5.67*10^-8[873^4-283^4]/[0+(1/pi*.1524*8.5344*.5)+(1-.8/.8*.6096*8.5344)]
Q13=60593.18 W
3)here equllibrium temperature is given by
Q12=Q21+Q22+Q23
here Q22=0 as same temperature
Q12=5.67*10^-8[T1^4-T2^4]/[(1-e1/e1*A1)+(1/A1*F12)+(1-e2/e2*A2)]
Q12=5.67*10^-8[873^4-T2^4]/[0+(1/pi*.1524*8.5344*.5)+(1-.1/.9*pi*.6096*.5*8.5344)]
so we get
Q12=9.2672*10^-8[873^4-T2^4]
Q21=5.67*10^-8[T2^4-873^4]/[(1-e2/e2*A2)+(1/A2*F21)+(1-e1/e1*A1)]
Q21=7.1286*10^-4[T2^4-873^4]
Q12=5.67*10^-8[T2^4-283^4]/[(1-e2/e2*A2)+(1/A2*F23)+(1-e3/e3*A3)]
Q23=7.568*10^-8[T2^4-283^4]
on putting value in above equation of equillibrium we get
Q12=Q21+Q22+Q23
9.2672*10^-8[873^4-T2^4]=7.1286*10^-4[T2^4-873^4]+7.568*10^-8[T2^4-283^4]
T2=794.98 K


