If z1 a a and where a is a real constant express z 1 and z

If z1 = a + a and where a is a real constant, express z _1 and z _2 in the form r cos theta and hence find an expression for (z power/ z power of 6 in terms of a and i.

Solution

z1=a+a3i

z1=a(1+3i)

z1=2a((1/2)+(3 /2)i)

z1=2a cis(/3)

z2=1-i

z2=2((1/2)- (1/2)i)

z2=2 cis(7/4)

(z1/z2)=[2a cis(/3)]/[2 cis(7/4)]

(z1/z2)=[a2 cis((/3)-(7/4))]

(z1/z2)=a2  cis((-17/12))

(z1/z2)=a2  cis(2 +(-17/12))

(z1/z2)=a2  cis((7/12))

(z1/z2)6=(a2  cis((7/12)))6

(z1/z2)6=(a2)6 cis(6*(7/12)))

(z1/z2)6=8a6cis((7/2))

(z1/z2)6=8a6cis(2 +(3/2))

(z1/z2)6=8a6cis((3/2))

(z1/z2)6=8a6[cos((3/2))+i sin((3/2))]

(z1/z2)6=8a6[0+i(-1)]

(z1/z2)6=-8a6i

 If z1 = a + a and where a is a real constant, express z _1 and z _2 in the form r cos theta and hence find an expression for (z power/ z power of 6 in terms of

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site