Business Statistics Class The average grade point average GP
Business Statistics Class
The average grade point average (GPA) of undergraduate students in New York is normally distributed with a population mean of 2.5 and a population standard deviation of 0.5. Compute the following, showing all work:
(I) The percentage of students with GPA\'s between 2.0 and 2.3 is:
(II) The percentage of students with GPA\'s below 2.7 is:
(III) Above what GPA will the top 5% of the students be (i.e., compute the 95th percentile):
(IV) If a sample of 36 students is taken, what is the probability that the sample mean GPA will be between 2.60 and 2.75?
Solution
i)
We first get the z score for the two values. As z = (x - u) / s, then as          
 x1 = lower bound =    2      
 x2 = upper bound =    2.3      
 u = mean =    2.5      
           
 s = standard deviation =    0.5      
           
 Thus, the two z scores are          
           
 z1 = lower z score = (x1 - u)/s =    -1      
 z2 = upper z score = (x2 - u) / s =    -0.4      
           
 Using table/technology, the left tailed areas between these z scores is          
           
 P(z < z1) =    0.158655254      
 P(z < z2) =    0.344578258      
           
 Thus, the area between them, by subtracting these areas, is          
           
 P(z1 < z < z2) =    0.185923004 = 18.5923004% [answer]
***************
ii)
We first get the z score for the critical value. As z = (x - u) / s, then as          
           
 x = critical value =    2.7      
 u = mean =    2.5      
           
 s = standard deviation =    0.5      
           
 Thus,          
           
 z = (x - u) / s =    0.4      
           
 Thus, using a table/technology, the left tailed area of this is          
           
 P(z <   0.4   ) =    0.655421742 = 65.5421742 [answer]
*******************
iii)
First, we get the z score from the given left tailed area. As          
           
 Left tailed area =    0.95      
           
 Then, using table or technology,          
           
 z =    1.644853627      
           
 As x = u + z * s,          
           
 where          
           
 u = mean =    2.5      
 z = the critical z score =    1.644853627      
 s = standard deviation =    0.5      
           
 Then          
           
 x = critical value =    3.322426813   [answer]
**********************
iv)
We first get the z score for the two values. As z = (x - u) sqrt(n) / s, then as          
 x1 = lower bound =    2.6      
 x2 = upper bound =    2.75      
 u = mean =    2.5      
 n = sample size =    36      
 s = standard deviation =    0.5      
           
 Thus, the two z scores are          
           
 z1 = lower z score = (x1 - u) * sqrt(n) / s =    1.2      
 z2 = upper z score = (x2 - u) * sqrt(n) / s =    3      
           
 Using table/technology, the left tailed areas between these z scores is          
           
 P(z < z1) =    0.88493033      
 P(z < z2) =    0.998650102      
           
 Thus, the area between them, by subtracting these areas, is          
           
 P(z1 < z < z2) =    0.113719772   [answer]  
   


