The random variable x has a normal distribution with 75 and
Solution
Normal Distribution
 Mean ( u ) =75
 Standard Deviation ( sd )=10
 Normal Distribution = Z= X- u / sd ~ N(0,1)                  
 a)
 P(X > 80) = (80-75)/10
 = 5/10 = 0.5
 = P ( Z >0.5) From Standard Normal Table
 = 0.3085                  
 P(X < = 80) = (1 - P(X > 80)
 = 1 - 0.3085 = 0.6915                  
 b)
 P(X < 85) = (85-75)/10
 = 10/10= 1
 = P ( Z <1) From Standard Normal Table
 = 0.8413                  
 P(X > = 85) = (1 - P(X < 85)
 = 1 - 0.8413 = 0.1587                  
 c)
 To find P(a < = Z < = b) = F(b) - F(a)
 P(X < 70) = (70-75)/10
 = -5/10 = -0.5
 = P ( Z <-0.5) From Standard Normal Table
 = 0.30854
 P(X < 75) = (75-75)/10
 = 0/10 = 0
 = P ( Z <0) From Standard Normal Table
 = 0.5
 P(70 < X < 75) = 0.5-0.30854 = 0.1915                  
 d)
 P(X > 80) = (80-75)/10
 = 5/10 = 0.5
 = P ( Z >0.5) From Standard Normal Table
 = 0.3085                  
 e)
 To find P(a < = Z < = b) = F(b) - F(a)
 P(X < 77.5) = (77.5-75)/10
 = 2.5/10 = 0.25
 = P ( Z <0.25) From Standard Normal Table
 = 0.59871
 P(X < 78.5) = (78.5-75)/10
 = 3.5/10 = 0.35
 = P ( Z <0.35) From Standard Normal Table
 = 0.63683
 P(77.5 < X < 78.5) = 0.63683-0.59871 = 0.0381                  
 f)
 P(X > 110) = (110-75)/10
 = 35/10 = 3.5
 = P ( Z >3.5) From Standard Normal Table
 = 0.0002                  
 P(X < = 110) = (1 - P(X > 110)
 = 1 - 0.0002 = 0.9998                  

