A process for making certain bearings is under control if th
Solution
FOR 95% CONFIDENCE:
Note that              
 Margin of Error E = t(alpha/2) * s / sqrt(n)              
 Lower Bound = X - t(alpha/2) * s / sqrt(n)              
 Upper Bound = X + t(alpha/2) * s / sqrt(n)              
               
 where              
 alpha/2 = (1 - confidence level)/2 =    0.025          
 X = sample mean =    0.506          
 t(alpha/2) = critical t for the confidence interval =    2.262157163          
 s = sample standard deviation =    0.004          
 n = sample size =    10          
 df = n - 1 =    9          
 Thus,              
 Margin of Error E =    0.002861428          
 Lower bound =    0.503138572          
 Upper bound =    0.508861428          
               
 Thus, the confidence interval is              
               
 (   0.503138572   ,   0.508861428   )
As 0.5000 is not inside this interval, then the process is probably out of control. [CONCLUSION]

