Let d be a fixed positive integer greater than one Recall fr
Let d be a fixed positive integer greater than one. Recall from the Division Algorithm that a\' = a mod d if a = qd +a\', with 0 lessthanorequalto a\'
Solution
Using the division algorithm
since, a\'=a mod d and b\'=b mod d we have
a=qd+a\'
b=pd+b\'
a+b=qd+a\'+pd+b\'=(q+p)d+(a\'+b\')
Hence, a+b=a\'+b\' mod d
