Find uxt that solves the following problem Your solution may
     Find u(x,t) that solves the following problem:  Your solution may contain unevaluated infinite sums, but not unevaluated integrals.
 
  
  Solution
Data.
ut = ux,x + 1
u(0,t) = u (,t) = 0
u(x,0) = x(x-)
Answer.
Solve for:
ut - ux,x = 0
let u be;
u = eht+kx
heht+kx - k2eht+kx = 0
h = k2
replacing we have;
c.f = ek2t+kx
now,
P.I = 1/D´ - D2
= 1/D´[1- D2/D´]-1
= 1/D´(1+0+..+n) = t
so,
u(x,t) = ek2t+kx + t
u(x,0) = x(x-)
ekx = x(x-)
kx = log[x(x-)]
--
u(0,t) = 0
0 = ek2t+kx + t
0 = ek2t x ekx + t
= -t[x(x-)]+t
= x - tx2 + t
--
u(x,t) = x - t(x2 - 1)


