Prove that if A is an n times n inverible matrix then detA1
Prove that if A is an n times n inverible matrix, then det(A^-1) = 1/det(A).
Solution
Let A be a matrix of size n x n.
Suppose A is an invertible matrix then A. A-1 = A-1. A= I where I is an identity matrix of size n
Det (A . A-1 ) = Det( A-1. A )=det( I )
Det (A ).De t( A-1 ) = Det( A-1 ).Det ( A ) = 1
Therefore, Det ( A-1 ) = 1/ Det( A )
